Mycotoxin Biosynthesis and Central Metabolism Are Two Interlinked Pathways in Fusarium graminearum, as Demonstrated by the Extensive Metabolic Changes Induced by Caffeic Acid Exposure

Author:

Atanasova-Penichon Vessela1ORCID,Legoahec Laurie1,Bernillon Stéphane23ORCID,Deborde Catherine23ORCID,Maucourt Mickaël23,Verdal-Bonnin Marie-Noëlle1,Pinson-Gadais Laetitia1,Ponts Nadia1,Moing Annick23ORCID,Richard-Forget Florence1

Affiliation:

1. UR1264 MycSA, INRA, Centre INRA de Nouvelle Aquitaine—Bordeaux, Villenave d'Ornon, France

2. UMR1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, Centre INRA de Nouvelle Aquitaine—Bordeaux, Villenave d'Ornon, France

3. Metabolome Facility of Bordeaux Functional Genomics Center, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine—Bordeaux, Villenave d'Ornon, France

Abstract

ABSTRACT Fusarium graminearum is a major plant pathogen that causes devastating diseases of cereals and produces type B trichothecene (TCTB) mycotoxins in infected grains. A comprehensive understanding of the molecular and biochemical mechanisms underlying the regulation of TCTB biosynthesis is required for improving strategies to control the TCTB contamination of crops and ensuring that these strategies do not favor the production of other toxic metabolites by F. graminearum . Elucidation of the association of TCTB biosynthesis with other central and specialized processes was the focus of this study. Combined 1 H nuclear magnetic resonance ( 1 H NMR) and liquid chromatography-quadrupole time of flight-mass spectrometry (LC-QTOF-MS) analyses were used to compare the exo- and endometabolomes of F. graminearum grown under toxin-inducing and -repressing caffeic acid conditions. Ninety-five metabolites were putatively or unambiguously identified, including 26 primary and 69 specialized metabolites. Our data demonstrated that the inhibition of TCTB production induced by caffeic acid exposure was associated with significant changes in the secondary and primary metabolism of F. graminearum , although the fungal growth was not affected. The main metabolic changes were an increase in the accumulation of several polyketides, including toxic ones, alterations in the tricarboxylic organic acid cycle, and modifications in the metabolism of several amino acids and sugars. While these findings provide insights into the mechanisms that govern the inhibition of TCTB production by caffeic acid, they also demonstrate the interdependence between the biosynthetic pathway of TCTB and several primary and specialized metabolic pathways. These results provide further evidence of the multifaceted role of TCTB in the life cycle of F. graminearum . IMPORTANCE Fusarium graminearum is a major plant pathogen that causes devastating diseases of cereal crops and produces type B trichothecene (TCTB) mycotoxins in infected grains. The best way to restrict consumer exposure to TCTB is to limit their production before harvest, which requires increasing the knowledge on the mechanisms that regulate their biosynthesis. Using a metabolomics approach, we investigated the interconnection between the TCTB production pathway and several fungal metabolic pathways. We demonstrated that alteration in the TCTB biosynthetic pathway can have a significant impact on other metabolic pathways, including the biosynthesis of toxic polyketides, and vice versa. These findings open new avenues for identifying fungal targets for the design of molecules with antimycotoxin properties and therefore improving sustainable strategies to fight against diseases caused by F. graminearum . Our data further demonstrate that analyses should consider all fungal toxic metabolites rather than the targeted family of mycotoxins when assessing the efficacy of control strategies.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3