Regulation of the rulAB Mutagenic DNA Repair Operon of Pseudomonas syringae by UV-B (290 to 320 Nanometers) Radiation and Analysis of rulAB -Mediated Mutability In Vitro and In Planta

Author:

Kim Jae J.1,Sundin George W.1

Affiliation:

1. Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132

Abstract

ABSTRACT The effects of the rulAB operon of Pseudomonas syringae on mutagenic DNA repair and the transcriptional regulation of rulAB following irradiation with UV-B wavelengths were determined. For a rulB ::Km insertional mutant constructed in P. syringae pv. syringae B86-17, sensitivity to UV-B irradiation increased and UV mutability decreased by 12- to 14-fold. rulAB -induced UV mutability was also tracked in phyllosphere populations of B86-17 for up to 5 days following plant inoculation. UV mutability to rifampin resistance (Rif r ) was detected at all sampling points at levels which were significantly greater than in nonirradiated controls. In P. aeruginosa PAO1, the cloned rulAB determinant on pJJK17 conferred a 30-fold increase in survival and a 200-fold increase in mutability following a UV-B dose of 1,900 J m −2 . In comparative studies using defined genetic constructs, we determined that rulAB restored mutability to the Escherichia coli umuDC deletion mutant RW120 at a level between those of its homologs mucAB and umuDC . Analyses using a rulAB :: inaZ transcriptional fusion in Pseudomonas fluorescens Pf5 showed that rulAB was rapidly induced after UV-B irradiation, with expression levels peaking at 4 h. At the highest UV-B dose administered, transcriptional activity of the rulAB promoter was elevated as much as 261-fold compared to that of a nonirradiated control. The importance of rulAB for survival of P. syringae in its phyllosphere habitat, coupled with its wide distribution among a broad range of P. syringae genotypes, suggests that this determinant would be appropriate for continued investigations into the ecological ramifications of mutagenic DNA repair.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference52 articles.

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3