Metabolic and Bactericidal Effects of Targeted Suppression of NadD and NadE Enzymes in Mycobacteria

Author:

Rodionova Irina A.1,Schuster Brian M.2,Guinn Kristine M.2,Sorci Leonardo13,Scott David A.1,Li Xiaoqing1,Kheterpal Indu4,Shoen Carolyn5,Cynamon Michael5,Locher Christopher6,Rubin Eric J.2,Osterman Andrei L.1

Affiliation:

1. Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, USA

2. Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA

3. Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, Ancona, Italy

4. Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA

5. Department of Medicine, Veterans Affairs Medical Center, Syracuse, New York, USA

6. Vertex Pharmaceuticals Incorporated, Cambridge, Massachusetts, USA

Abstract

ABSTRACT Mycobacterium tuberculosis remains a major cause of death due to the lack of treatment accessibility, HIV coinfection, and drug resistance. Development of new drugs targeting previously unexplored pathways is essential to shorten treatment time and eliminate persistent M. tuberculosis . A promising biochemical pathway which may be targeted to kill both replicating and nonreplicating M. tuberculosis is the biosynthesis of NAD(H), an essential cofactor in multiple reactions crucial for respiration, redox balance, and biosynthesis of major building blocks. NaMN adenylyltransferase (NadD) and NAD synthetase (NadE), the key enzymes of NAD biosynthesis, were selected as promising candidate drug targets for M. tuberculosis . Here we report for the first time kinetic characterization of the recombinant purified NadD enzyme, setting the stage for its structural analysis and inhibitor development. A protein knockdown approach was applied to validate bothNadD and NadE as target enzymes. Induced degradation of either target enzyme showed a strong bactericidal effect which coincided with anticipated changes in relative levels of NaMN and NaAD intermediates (substrates of NadD and NadE, respectively) and ultimate depletion of the NAD(H) pool. A metabolic catastrophe predicted as a likely result of NAD(H) deprivation of cellular metabolism was confirmed by 13 C biosynthetic labeling followed by gas chromatography-mass spectrometry (GC-MS) analysis. A sharp suppression of metabolic flux was observed in multiple NAD(P)(H)-dependent pathways, including synthesis of many amino acids (serine, proline, aromatic amino acids) and fatty acids. Overall, these results provide strong validation of the essential NAD biosynthetic enzymes, NadD and NadE, as antimycobacterial drug targets. IMPORTANCE To address the problems of M. tuberculosis drug resistance and persistence of tuberculosis, new classes of drug targets need to be explored. The biogenesis of NAD cofactors was selected for target validation because of their indispensable role in driving hundreds of biochemical transformations. We hypothesized that the disruption of NAD production in the cell via genetic suppression of the essential enzymes (NadD and NadE) involved in the last two steps of NAD biogenesis would lead to cell death, even under dormancy conditions. In this study, we confirmed the hypothesis using a protein knockdown approach in the model system of Mycobacterium smegmatis . We showed that induced proteolytic degradation of either target enzyme leads to depletion of the NAD cofactor pool, which suppresses metabolic flux through numerous NAD(P)-dependent pathways of central metabolism of carbon and energy production. Remarkably, bactericidal effect was observed even for nondividing bacteria cultivated under carbon starvation conditions.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3