Exploring the pediatric nasopharyngeal bacterial microbiota with culture-based MALDI-TOF mass spectrometry and targeted metagenomic sequencing

Author:

Pol Sreymom1ORCID,Kallonen Teemu23ORCID,Mäklin Tommi4ORCID,Sar Poda1,Hopkins Jill15ORCID,Soeng Sona1,Miliya Thyl1,Ling Clare L.15ORCID,Bentley Stephen D.3ORCID,Corander Jukka236ORCID,Turner Paul15ORCID

Affiliation:

1. Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia

2. Department of Biostatistics, University of Oslo, Oslo, Norway

3. Wellcome Sanger Institute, Hinxton, United Kingdom

4. Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland

5. Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom

6. Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland

Abstract

ABSTRACT The nasopharynx is an important reservoir of disease-associated and antimicrobial-resistant bacterial species. This proof-of-concept study assessed the utility of a combined culture, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), and targeted metagenomic sequencing workflow for the study of the pediatric nasopharyngeal bacterial microbiota. Nasopharyngeal swabs and clinical metadata were collected from Cambodian children during a hospital outpatient visit and then biweekly for 12 weeks. Swabs were cultured on chocolate and blood-gentamicin agar, and all colony morphotypes were identified by MALDI-TOF MS. Metagenomic sequencing was done on a scrape of all colonies from a chocolate agar culture and processed using the mSWEEP pipeline. One hundred one children were enrolled, yielding 620 swabs. MALDI-TOF MS identified 106 bacterial species/40 genera: 20 species accounted for 88.5% (2,190/2,474) of isolates. Colonization by Moraxella catarrhalis (92.1% of children on ≥1 swab), Haemophilus influenzae (87.1%), and Streptococcus pneumoniae (83.2%) was particularly common. In S. pneumoniae -colonized children, a median of two serotypes [inter-quartile range (IQR) 1–2, range 1–4] was detected. For the 21 bacterial species included in the mSWEEP database and identifiable by MALDI-TOF, detection by culture + MALDI-TOF MS and culture + mSWEEP was highly concordant with a median species-level agreement of 96.9% (IQR 86.8%–98.8%). mSWEEP revealed highly dynamic lineage-level colonization patterns for S. pneumoniae which were quite different to those for S. aureus . A combined culture, MALDI-TOF MS, targeted metagenomic sequencing approach for the exploration of the young child nasopharyngeal microbiome was technically feasible, and each component yielded complementary data. IMPORTANCE The human upper respiratory tract is an important source of disease-causing and antibiotic-resistant bacteria. However, understanding the interactions and stability of these bacterial populations is technically challenging. We used a combination of approaches to determine colonization patterns over a 3-month period in 101 Cambodian children. The combined approach was feasible to implement, and each component gave complementary data to enable a better understanding of the complex patterns of bacterial colonization.

Funder

Wellcome Trust

EC | European Research Council

Norwegian Research Council

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3