Structure-Activity Relationships of Aminocoumarin-Type Gyrase and Topoisomerase IV Inhibitors Obtained by Combinatorial Biosynthesis

Author:

Flatman Ruth H.1,Eustaquio Alessandra2,Li Shu-Ming2,Heide Lutz2,Maxwell Anthony1

Affiliation:

1. Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, United Kingdom

2. Pharmazeutische Biologie, Pharmazeutisches Institut, Auf der Morgenstelle 8, D-72076 Tübingen, Germany

Abstract

ABSTRACT Novobiocin and clorobiocin are gyrase inhibitors produced by Streptomyces strains. Structurally, the two compounds differ only by substitution at two positions: CH 3 versus Cl at position 8′ of the aminocoumarin ring and carbamoyl versus 5-methyl-pyrrol-2-carbonyl (MePC) at the 3"-OH of noviose. Using genetic engineering, we generated a series of analogs carrying H, CH 3 , or Cl at 8′ and H, carbamoyl, or MePC at 3"-OH. Comparison of the gyrase inhibitory activities of all nine structural permutations confirmed that acylation of 3"-OH is essential for activity, with MePC being more effective than carbamoyl. Substitution at 8′ further enhanced activity, but the effect of CH 3 or Cl depended on the nature of the acyl group at 3": in the presence of carbamoyl at 3", CH 3 resulted in higher activity; in the presence of MePC at 3", Cl resulted in higher activity. This suggests that the structures of both natural compounds are highly evolved for optimal interaction with gyrase. In a second series of experiments, clorobiocin derivatives with and without the methyl group at 4"-OH of noviose, and with different positions of the MePC group of noviose, were tested. Again clorobiocin was superior to all of its analogs. The activities of all compounds were also tested against topoisomerase IV (topo IV). Clorobiocin stood out as a remarkably effective topo IV inhibitor. The relative activities of the different compounds toward topo IV showed a pattern similar to that of the relative gyrase-inhibitory activities. This is the first report of a systematic evaluation of a series of aminocoumarins against both gyrase and topo IV. The results give further insight into the structure-activity relationships of aminocoumarin antibiotics.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3