Growth phase in relation to ketoconazole and miconazole susceptibilities of Candida albicans

Author:

Beggs W H

Abstract

The antifungal imidazoles miconazole and ketoconazole inhibit synthesis of essential cell membrane components. Furthermore, miconazole can exert direct physicochemical cell membrane damage at relatively high levels, but ketoconazole cannot. Experiments were designed to explain our previous observation that concentrations of miconazole capable of causing direct membrane damage were no more active against Candida albicans than equimolar levels of ketoconazole. When stationary-phase cells were inoculated into medium containing either drug at 3.8 X 10(-5) M, fungistatic effects were indistinguishable. If, however, such cultures were incubated 3 h before drug addition, differences were remarkable. After 3 h, miconazole caused a 99% reduction in CFU per milliliter within 20 min, but ketoconazole again was only fungistatic. The immediate onset, rapidity, and magnitude of the miconazole effect were indicative of direct lethal cell damage. Miconazole concentrations as low as 1.0 X 10(-5) M were similarly active. It was concluded that C. albicans undergoes phenotypic changes during the growth cycle that coincidentally confer susceptibility or resistance to the lethal direct membrane damage effect of miconazole. The fungistatic or metabolic effects of ketoconazole or low-level miconazole appeared to be independent of growth phase.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference18 articles.

1. Comparison of miconazole and ketoconazore activities against Candida albicans and Candida parapsilosis;Besgs W. H.;IRCS Med. Sci.,1982

2. Comparison of miconazole- and ketoconazole-induced release of K+ from Candida species;Beggs W. H.;J. Antimicrob. Chemother.,1983

3. Physiological states of Candida parapsilosis in relation to miconazole and ketoconazole susceptibilities;Beggs W. H.;IRCS Med. Sci.,1983

4. Ultrastructural changes in the cell wall of Candida albicans following cessation of growth and their possible relationship to the development of polyene resistance;Cassone A.;J. Gen. Microbiol.,1979

5. Mode of action of miconazole on Candida albicans: effect on growth, viability and K+ release;Cope E.;J. Gen. Microbiol.,1980

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3