Interferon-stimulated gene TDRD7 interacts with AMPK and inhibits its activation to suppress viral replication and pathogenesis

Author:

Chakravarty Sukanya1,Subramanian Gayatri1,Popli Sonam1,Veleeparambil Manoj1,Fan Shumin1,Chakravarti Ritu2,Chattopadhyay Saurabh1ORCID

Affiliation:

1. Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio, USA

2. Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio, USA

Abstract

ABSTRACT Many viruses activate cellular autophagy in infected cells to facilitate their replication. Recently, we identified an interferon (IFN)-stimulated gene (ISG) Tudor domain containing 7 (TDRD7), which inhibits viral replication by blocking autophagy pathway. Here, we present a molecular mechanism for TDRD7 action and its relative contribution to protection against viral pathogenesis. TDRD7 inhibited the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), a kinase required for initiating autophagy. Mechanistically, TDRD7 interacted directly with AMPK in the cytosolic compartment. Domain-mapping analyses revealed C-terminal Tudor domain of TDRD7 interacted with auto-inhibitory domain of AMPK. Deletion of Tudor domains abolished anti-AMPK and antiviral activities of TDRD7. We evaluated physiological relevance of TDRD7 function against viral replication using newly engineered TDRD7 knockout mice and the derived primary cells. TDRD7 knockout primary cells displayed increased AMPK activation, which led to a higher viral load. Subsequently, TDRD7 knockout mice showed enhanced susceptibility upon intranasal Sendai virus infection. Therefore, our study revealed a new antiviral function of IFN, mediated by TDRD7-AMPK, inhibiting viral replication and pathogenesis. IMPORTANCE Virus infection triggers induction of interferon (IFN)-stimulated genes (ISGs), which ironically inhibit viruses themselves. We identified Tudor domain-containing 7 (TDRD7) as a novel antiviral ISG, which inhibits viral replication by interfering with autophagy pathway. Here, we present a molecular basis for autophagy inhibitory function of TDRD7. TDRD7 interacted with adenosine monophosphate (AMP)-activated protein kinase (AMPK), the kinase that initiates autophagy, to inhibit its activation. We identified domains required for the interaction; deleting AMPK-interacting domain blocked antiAMPK and antiviral activities of TDRD7. We used primary cells and mice to evaluate the TDRD7-AMPK antiviral pathway. TDRD7-deficient primary mouse cells exhibited enhanced AMPK activation and viral replication. Finally, TDRD7 knockout mice showed increased susceptibility to respiratory virus infection. Therefore, our study revealed a new antiviral pathway of IFN and its contribution to host response. Our results have therapeutic potential; a TDRD7-derived peptide may be an effective AMPK inhibitor with application as antiviral agent.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3