Cystine reductase in the dimorphic fungus Histoplasma capsulatum

Author:

Maresca B,Jacobson E,Medoff G,Kobayashi G

Abstract

Organo-sulfur compounds favor the transition of mycelia of Histoplasma capsulatum to the yeast form (6, 8). Investigation of the role of cystine in the transition revealed that the two phases concentrated this amino acid at comparable rates and that mutants defective in the uptake of cystine were still able to undergo the transition normally. Uptake of cystine is therefore probably not a requirement for transition to or maintenance of the yeast phase. Both phases contained a reduced nicotinamide adenine dinucleotide phosphate-dependent glutathione reductase; but a reduced nicotinamide adenine dinucleotide-dependent cystine reductase was detectable only in the yeast phase. The cystine reductase appeared early in the transition of mycelium to yeast. Treatment of mycelia with p-chloromercuriphenylsulfonic acid, which prevented the transition to yeast, had no effect on cystine uptake but strongly inhibited the cystine reductase. These results suggest that cystine reductase may provide reduced sulfhydryl groups involved in the transition of mycelium to yeast.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference10 articles.

1. Antibiotic sensitivity of yeast and mycelial phase of H. capsulatum;Cheung S. C.;Sabouraudia,1976

2. Response of yeast and mycelia phase of H. capsulatum to amphotericin B and actinomycin D;Cheung S. C.;Antimicrob. Agents Chemother.,1975

3. A cultural study of the life-cycle of H. capsulatum Darling 1906;Conant N. F.;J. Bacteriol.,1941

4. Protein measurement with the Folin phenol reagent;Lowry 0.;J. Biol. Chem.,1951

5. Regulation of dimorphism in the pathogenic fungus H. capsulatum;Maresca B.;Nature (London),1977

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3