Effects of Reduced and Enhanced Glycogen Pools on Salt-Induced Sucrose Production in a Sucrose-Secreting Strain of Synechococcus elongatus PCC 7942

Author:

Qiao Cuncun123,Duan Yangkai14,Zhang Mingyi143,Hagemann Martin5,Luo Quan14,Lu Xuefeng16

Affiliation:

1. Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China

2. Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China

3. University of Chinese Academy of Sciences, Beijing, China

4. Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China

5. Institut für Biowissenschaften, Pflanzenphysiologie, Universität Rostock, Rostock, Germany

6. Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Abstract

ABSTRACT Sucrose and glycogen syntheses in cyanobacteria share the common precursor glucose-1-phosphate. It is generally assumed that lowering glycogen synthesis could drive more carbon toward sucrose synthesis that can be induced by salt stress among cyanobacteria. By using a theophylline-dependent riboswitch system, the expression of glgC , a key gene in glycogen synthesis, was downregulated in a quantitative manner in a sucrose-secreting strain of Synechococcus elongatus PCC 7942. We observed that the stepwise suppression of glycogen synthesis limited rather than stimulated sucrose production in the salt-stressed cells, suggesting that glycogen could serve as a carbon pool for the synthesis of sucrose. Accordingly, we generated glycogen-overproducing strains, but the increased glycogen pool alone did not stimulate sucrose production, indicating that alternative steps limit the carbon flux toward the synthesis of sucrose. Consistent with previous studies that showed that sucrose-phosphate synthase (SPS) catalyzes the rate-limiting step in sucrose synthesis, the combination of glycogen overproduction and sps overexpression resulted in increased sucrose production. Our results indicate that the glycogen and sucrose pools are closely linked in Synechococcus elongatus PCC 7942, and we propose that enhancing the glycogen pool could be a promising strategy for the improvement of sucrose production by cyanobacteria in the presence of a strong sucrose synthesis sink. IMPORTANCE Many cyanobacteria naturally synthesize and accumulate sucrose when stressed by NaCl, which provides novel possibilities for obtaining sugar feedstock by engineering of cyanobacteria. It has been assumed that glycogen synthesis competes with sucrose synthesis for the carbon flux. However, our results showed that the suppression of glycogen synthesis decreased rather than stimulated sucrose production in a sucrose-secreting strain of Synechococcus elongatus PCC 7942. This result suggests that glycogen could serve as a supportive rather than a competitive carbon pool for the synthesis of sucrose, providing new insights about the relation between glycogen synthesis and sucrose synthesis in cyanobacteria. This finding is also useful to guide metabolic engineering work to optimize the production of sucrose and possibly other products by cyanobacteria.

Funder

National Science Fund for Distinguished Young Scholars of China

Joint Sino-German research project

National Science Foundation of China

Shangdong Taishan Scholarship

Qingdao Innovative Leading Talent project

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3