Development of Group- and Serotype-Specific One-Step SYBR Green I-Based Real-Time Reverse Transcription-PCR Assay for Dengue Virus

Author:

Shu Pei-Yun1,Chang Shu-Fen1,Kuo Yu-Chung1,Yueh Yi-Yun1,Chien Li-Jung1,Sue Chien-Lin1,Lin Ting-Hsiang1,Huang Jyh-Hsiung1

Affiliation:

1. From Division of Research Development and Laboratory Diagnosis, Center for Disease Control, Department of Health, Taipei, Taiwan, Republic of China

Abstract

ABSTRACT A quantitative one-step SYBR Green I-based reverse transcription (RT)-PCR system was developed for the detection and differentiation of four different dengue virus serotypes in acute-phase serum samples. A set of group- and serotype-specific primer pairs was designed against conserved sequences in the core region and evaluated for clinical diagnosis. A linear relationship was obtained between the amount of input RNA and cycle threshold (Ct) value over a range of 10 to 10 7 PFU per ml of cell culture-derived dengue viruses. The detection limit of the group-specific primer pair was between 4.1 and 43.5 PFU/ml for four dengue serotypes. The detection limit of each of the serotype-specific primer pairs was calculated to be 10 PFU/ml for dengue virus serotype 1 (DEN-1), 4.6 PFU/ml for DEN-2, 4.1 PFU/ml for DEN-3, and 5 PFU/ml for DEN-4. Comparisons between the one-step SYBR Green-based RT-PCR assay and the conventional cell culture method in the clinical diagnosis of dengue virus infection from acute-phase serum samples of confirmed dengue patients were performed. The results showed that 83 and 67% of 193 acute-phase serum samples tested were positive by the one-step SYBR Green-based RT-PCR method and cell culture method, respectively. Further analysis showed that the one-step SYBR Green-based RT-PCR method could detect twice as many acute-phase serum samples with positive dengue-specific immunoglobulin M (IgM) and/or IgG antibodies than cell culture method. Our results demonstrate the potential clinical application of the one-step SYBR Green I-based RT-PCR assay for the detection and differentiation of dengue virus RNA.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3