A 15-base-pair element activates the SPS4 gene midway through sporulation in Saccharomyces cerevisiae

Author:

Hepworth S R1,Ebisuzaki L K1,Segall J1

Affiliation:

1. Department of Biochemistry, University of Toronto, Ontario, Canada.

Abstract

Sporulation of the yeast Saccharomyces cerevisiae represents a simple developmental process in which the events of meiosis and spore wall formation are accompanied by the sequential activation of temporally distinct classes of genes. In this study, we have examined expression of the SPS4 gene, which belongs to a group of genes that is activated midway through sporulation. We mapped the upstream boundary of the regulatory region of SPS4 by monitoring the effect of sequential deletions of 5'-flanking sequence on expression of plasmid-borne versions of SPS4 introduced into a MATa/MAT alpha delta sps4/delta sps4 strain. This analysis indicated that the 5' boundary of the regulatory region was within 50 bp of the putative TATA box of the gene. By testing various oligonucleotides that spanned this boundary and the downstream sequence for their ability to activate expression of a heterologous promoter, we found that a 15-bp sequence sufficed to act as a sporulation-specific upstream activation sequence. This 15-bp fragment, designated UASSPS4, activated expression of a CYC1-lacZ reporter gene midway through sporulation and was equally active in both orientations. Extending the UAS fragment to include the adjacent 14-bp enhanced its activity 10-fold. We show that expression of SPS4 is regulated in a manner distinct from that of early meiotic genes: mutation of UME6 did not lead to vegetative expression of SPS4, and sporulation-specific expression was delayed by mutation of IME2. In vivo and in vitro assays suggested that a factor present in vegetative cells bind to the UASSPS4 element. We speculate that during sporulation this factor is modified to serve as an activator of the SPS4 gene or, alternatively, that it recruits an activator to the promoter.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3