Severe Depletion of CD4 + CD25 + Regulatory T Cells from the Intestinal Lamina Propria but Not Peripheral Blood or Lymph Nodes during Acute Simian Immunodeficiency Virus Infection

Author:

Chase Amanda J.1,Sedaghat Ahmad R.1,German Jennifer R.1,Gama Lucio2,Zink M. Christine2,Clements Janice E.2,Siliciano Robert F.13

Affiliation:

1. Departments of Medicine

2. Comparative Medicine, Johns Hopkins University School of Medicine

3. Howard Hughes Medical Institute, Baltimore, Maryland

Abstract

ABSTRACT CD4 + CD25 + regulatory T cells (Tregs) suppress the activation and proliferation of effector lymphocytes. In human immunodeficiency virus type 1 (HIV-1) infection, Tregs play a significant role in controlling the apoptotic loss of uninfected CD4 + T cells resulting from high levels of generalized immune activation. During acute HIV-1 infection, more than 50% of CD4 + T cells are depleted from the gastrointestinal lamina propria. To elucidate the role of Tregs in HIV-1-induced depletion of CD4 + T cells in the gut-associated lymphoid tissue (GALT), we first determine the distribution of Tregs in a setting of acute infection using the simian immunodeficiency virus (SIV)/pigtailed macaque model of HIV-1 disease. CD4 + T cells from the GALT, lymph nodes, and peripheral blood were isolated from SIV-infected pigtailed macaques on days 4, 14, and 114 postinoculation. Quantitative real-time reverse transcription-PCR was used to quantitate FOXP3 copy numbers in SIV-infected and uninfected control macaques. Expression of FOXP3 in the ileal lamina propria was significantly decreased at all stages of infection compared to levels in uninfected control macaques. In addition, functional analysis of ileal CD4 + T cells from SIV-infected macaques revealed a lack of suppressive activity suggestive of the absence of Tregs in that compartment. These results indicate that Tregs are rapidly depleted in the GALT of SIV-infected macaques, defining a role for the loss of Treg-mediated suppression in early events in the pathogenesis of the disease.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3