Pseudo-Second-Order Calcium-Mediated Cryptosporidium parvum Oocyst Attachment to Environmental Biofilms

Author:

Luo Xia1,Jedlicka Sabrina2,Jellison Kristen1

Affiliation:

1. Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, Pennsylvania, USA

2. Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA

Abstract

ABSTRACT Cryptosporidium parvum oocysts are able to infect a wide range of mammals, including humans, via fecal-oral transmission. The remobilization of biofilm-associated C. parvum oocysts back into the water column by biofilm sloughing or bulk erosion poses a threat to public health and may be responsible for waterborne outbreaks; thus, the investigation of C. parvum attachment mechanisms to biofilms, particularly the physical and chemical factors controlling oocyst attachment to biofilms, is essential to predict the behavior of oocysts in the environment. In our study, biofilms were grown in rotating annular bioreactors using prefiltered stream water (0.2-μm retention) and rock biofilms (6-μm retention) until the mean biofilm thickness reached steady state. Oocyst deposition followed a calcium-mediated pseudo-second-order kinetic model. Kinetic parameters (i.e., initial oocyst deposition rate constant and total number of oocysts adhered to biofilms at equilibrium) from the model were then used to evaluate the impact of water conductivity on the attachment of oocysts to biofilms. Oocyst deposition was independent of solution ionic strength; instead, the presence of calcium enhanced oocyst attachment, as demonstrated by deposition tests. Calcium was identified as the predominant factor that bridges the carboxylic functional groups on biofilm and oocyst surfaces to cause attachment. The pseudo-second-order kinetic profile fit all experimental conditions, regardless of water chemistry and/or lighting conditions. IMPORTANCE The cation bridging model in our study provides new insights into the impact of calcium on the attachment of C. parvum oocysts to environmental biofilms. The kinetic parameters derived from the model could be further analyzed to elucidate the behavior of oocysts in commonly encountered complex aquatic systems, which will enable future innovations in parasite detection and treatment technologies to protect public health.

Funder

National Science Foundation

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3