Affiliation:
1. Department of Biology, Texas A&M University, College Station, Texas, USA
Abstract
ABSTRACT
Many anaerobic spore-forming clostridial species are pathogenic, and some are industrially useful. Although many are strict anaerobes, the bacteria persist under aerobic and growth-limiting conditions as multilayered metabolically dormant spores. For many pathogens, the spore form is what most commonly transmits the organism between hosts. After the spores are introduced into the host, certain proteins (germinant receptors) recognize specific signals (germinants), inducing spores to germinate and subsequently grow into metabolically active cells. Upon germination of the spore into the metabolically active vegetative form, the resulting bacteria can colonize the host and cause disease due to the secretion of toxins from the cell. Spores are resistant to many environmental stressors, which make them challenging to remove from clinical environments. Identifying the conditions and the mechanisms of germination in toxin-producing species could help develop affordable remedies for some infections by inhibiting germination of the spore form. Unrelated to infectious disease, spore formation in species used in the industrial production of chemicals hinders the optimum production of the chemicals due to the depletion of the vegetative cells from the population. Understanding spore germination in acetone-butanol-ethanol-producing species can help boost the production of chemicals, leading to cheaper ethanol-based fuels. Until recently, clostridial spore germination is assumed to be similar to that of
Bacillus subtilis
. However, recent studies in
Clostridium difficile
shed light on a mechanism of spore germination that has not been observed in any endospore-forming organisms to date. In this review, we focus on the germinants and the receptors recognizing these germinants in various clostridial species.
Funder
HHS | NIH | National Institute of Allergy and Infectious Diseases
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献