Baculovirus-Mediated Gene Delivery into Mammalian Cells Does Not Alter Their Transcriptional and Differentiating Potential but Is Accompanied by Early Viral Gene Expression

Author:

Kenoutis Christos1,Efrose Rodica C.1,Swevers Luc1,Lavdas Alexandros A.2,Gaitanou Maria2,Matsas Rebecca2,Iatrou Kostas1

Affiliation:

1. Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research Demokritos, 153 10 Aghia Paraskevi Attikis (Athens), Greece

2. Cellular and Molecular Neurobiology Laboratory, Hellenic Pasteur Institute, Athens, Greece

Abstract

ABSTRACT Gene delivery to neural cells is central to the development of transplantation therapies for neurological diseases. In this study, we used a baculovirus derived from the domesticated silk moth, Bombyx mori , as vector for transducing a human cell line (HEK293) and primary cultures of rat Schwann cells. Under optimal conditions of infection with a recombinant baculovirus containing the reporter green fluorescent protein gene under mammalian promoter control, the infected cells express the transgene with high efficiency. Toxicity assays and transcriptome analyses suggest that baculovirus infection is not cytotoxic and does not induce differential transcriptional responses in HEK293 cells. Infected Schwann cells retain their characteristic morphological and molecular phenotype as determined by immunocytochemistry for the marker proteins S-100, glial fibrillary acidic protein, and p75 nerve growth factor receptor. Moreover, baculovirus-infected Schwann cells are capable of differentiating in vitro and express the P0 myelination marker. However, transcripts for several immediate-early viral genes also accumulate in readily detectable levels in the transduced cells. This transcriptional activity raises concerns regarding the long-term safety of baculovirus vectors for gene therapy applications. Potential approaches for overcoming the identified problem are discussed.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3