Affiliation:
1. Secció de Microbiología, Facultat de Farmàcia, Universitat de València, Spain.
Abstract
Aculeacin A is a lipopeptide that inhibits beta-glucan synthesis in yeasts. A number of Saccharomyces cerevisiae mutants resistant to this antibiotic were isolated, and four loci (ACR1, ACR2, ACR3, and ACR4) whose products are involved in the sensitivity to aculeacin A of yeast cells were defined. Mutants containing mutations in the four loci were also resistant to echinocandin B, another member of this lipopeptide family of antibiotics. In contrast, acr1, acr3, and acr4 mutants were resistant to papulacandin B (an antibiotic containing a disaccharide linked to two fatty acid chains that also inhibits beta-glucan synthesis), but acr2 mutants were susceptible to this antibiotic. This result defines common and specific steps in the entry and action of aculeacin A and papulacandin B. The analysis of double mutants revealed an epistatic effect of the acr2 mutation on the other three mutations. Cell walls of the four different mutants did not show significant alterations in composition with respect to the parental strain, and in vitro glucan synthase activity was also unaffected. However, cell surface hydrophobicity in three of the mutants was considerably decreased with respect to the parental strain.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献