Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions

Author:

Schalich J1,Allison S L1,Stiasny K1,Mandl C W1,Kunz C1,Heinz F X1

Affiliation:

1. Institute of Virology, University of Vienna, Austria.

Abstract

Recombinant subviral particles (RSPs) obtained by coexpression of the envelope (E) and premembrane (prM) proteins of tick-borne encephalitis virus in COS cells (S. L. Allison, K. Stadler, C. W. Mandl, C. Kunz, and F. X. Heinz, J. Virol. 69:5816-5820, 1995) were extensively characterized and shown to be ordered structures containing envelope glycoproteins with structural and functional properties very similar to those in the virion envelope. The particles were spherical, with a diameter of about 30 nm and a buoyant density of 1.14 g/cm3 in sucrose gradients. They contained mature E proteins with endoglycosidase H-resistant glycans as well as fully cleaved mature M proteins. Cleavage of prM, which requires an acidic pH in exocytic compartments, could be inhibited by treatment of transfected cells with ammonium chloride, implying a common maturation pathway for RSPs and virions. RSPs incorporated [14C]choline but not [3H]uridine, demonstrating that they contain lipid but probably lack nucleic acid. The envelope proteins of RSPs exhibited a native antigenic and oligomeric structure compared with virions, and incubation at an acidic pH (pH <6.5) induced identical conformational changes and structural rearrangements, including an irreversible quantitative conversion of dimers to trimers. The RSPs were also shown to be functionally active, inducing membrane fusion in a low-pH-dependent manner and demonstrating the same specific hemagglutination activity as whole virions. Tick-borne encephalitis virus RSPs thus represent an excellent model system for investigating the structural basis of viral envelope glycoprotein functions.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3