Affiliation:
1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Abstract
ABSTRACT
We have developed a rapid endospore viability assay (EVA) in which endospore germination serves as an indicator for viability and applied it to (i) monitor UV inactivation of endospores as a function of dose and (ii) determine the proportion of viable endospores in arctic ice cores (Greenland Ice Sheet Project 2 [GISP2] cores; 94 m). EVA is based on the detection of dipicolinic acid (DPA), which is released from endospores during germination. DPA concentrations were determined using the terbium ion (Tb
3+
)-DPA luminescence assay, and germination was induced by
l
-alanine addition. The concentrations of germinable endospores were determined by comparison to a standard curve. Parallel EVA and phase-contrast microscopy experiments to determine the percentage of germinable spores yielded comparable results (54.3% ± 3.8% and 48.9% ± 4.5%, respectively), while only 27.8% ± 7.6% of spores produced CFU. EVA was applied to monitor the inactivation of spore suspensions as a function of UV dose, yielding reproducible correlations between EVA and CFU inactivation data. The 90% inactivation doses were 2,773 J/m
2
, 3,947 J/m
2
, and 1,322 J/m
2
for EVA, phase-contrast microscopy, and CFU reduction, respectively. Finally, EVA was applied to quantify germinable and total endospore concentrations in two GISP2 ice cores. The first ice core contained 295 ± 19 germinable spores/ml and 369 ± 36 total spores/ml (i.e., the percentage of germinable endospores was 79.9% ± 9.3%), and the second core contained 131 ± 4 germinable spores/ml and 162 ± 17 total spores/ml (i.e., the percentage of germinable endospores was 80.9% ± 8.8%), whereas only 2 CFU/ml were detected by culturing.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献