Analysis of the evolution and variation of the human influenza A virus nucleoprotein gene from 1933 to 1990

Author:

Shu L L1,Bean W J1,Webster R G1

Affiliation:

1. Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101.

Abstract

This study examined the evolution and variation of the human influenza virus nucleoprotein gene from the earliest isolates to the present. Phylogenetic reconstruction of the most parsimonious evolutionary path connecting 49 nucleoprotein sequences yielded a single lineage. The average calculated rate of mutation was 3.6 nucleotide substitutions per year (2.3 x 10(-3) substitutions per site per year). Thirty-two percent of these mutations resulted in amino acid substitutions, and the remainder were silent mutations. Analysis of virus isolates from China and elsewhere showed no significant differences in their rate of evolution, genetic diversity, or mean survival time. The nearly constant rate of change was maintained through the two antigenic shifts, and there were no obvious changes in the number or types of mutations associated with the changes in the surface proteins. A detailed comparison of the changes that have occurred on the main evolutionary path with those that have occurred on the side branches of the phylogenetic tree was made. This showed that while 35% of the mutations on the side branches resulted in amino acid changes, only 21% of those on the main path affected the protein sequence. These results suggest that although the rate of change of the human influenza virus nucleoprotein is much higher than that previously described for avian influenza viruses, there are measurable constraints on the evolution of the surviving virus lineage. Comparison of the nucleoproteins of virus isolates adapted to chicken embryos with the nucleoproteins of those grown only in MDCK cells revealed no consistent differences between the virus pairs. Thus, although the nucleoprotein is known to be critical for host specificity, its adaptation to growth in eggs apparently involves no immediate selective pressures, such as are found with hemagglutinin.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3