Control of Bacterial Persister Cells by Trp/Arg-Containing Antimicrobial Peptides

Author:

Chen Xi,Zhang Mi,Zhou Chunhui,Kallenbach Neville R.,Ren Dacheng

Abstract

ABSTRACTPersister cells are dormant phenotypic variants inherent in a bacterial population. They play important roles in chronic infections and present great challenges to therapy due to extremely enhanced tolerance to antibiotics compared to that of normal cells of the same genotype. In this study, we report that cationic membrane-penetrating peptides containing various numbers of arginine and tryptophan repeats are effective in killing persister cells ofEscherichia coliHM22, a hyper-persister producer. The activities of three linear peptides [(RW)n-NH2, wherenis 2, 3, or 4] and a dendrimeric peptide, (RW)4D, in killing bacterial persisters were compared. Although the dendrimeric peptide (RW)4Drequires a lower threshold to kill planktonic persisters, octameric peptide (RW)4-NH2is the most effective against planktonic persister cells at high concentrations. For example, treatment with 80 μM (RW)4-NH2for 60 min led to a 99.7% reduction in the number of viable persister cells. The viability of persister cells residing in surface-attached biofilms was also significantly reduced by (RW)4-NH2and (RW)4D. These two peptides were also found to significantly enhance the susceptibility of biofilm cells to ofloxacin. The potency of (RW)4-NH2was further marked by its ability to disperse and kill preformed biofilms harboring high percentages of persister cells. Interestingly, approximately 70% of the dispersed cells were found to have lost their intrinsic tolerance and become susceptible to ampicillin if not killed directly by this peptide. These results are helpful for better understanding the activities of these peptides and may aid in future development of more effective therapies of chronic infections.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3