Cyanovirin-N, a Potent Human Immunodeficiency Virus-Inactivating Protein, Blocks both CD4-Dependent and CD4-Independent Binding of Soluble gp120 (sgp120) to Target Cells, Inhibits sCD4-Induced Binding of sgp120 to Cell-Associated CXCR4, and Dissociates Bound sgp120 from Target Cells

Author:

Mori Toshiyuki1,Boyd Michael R.1

Affiliation:

1. Laboratory of Natural Products, Division of Basic Sciences, National Cancer Institute-Frederick, Cancer Research and Development Center, Frederick, Maryland 21702

Abstract

ABSTRACT Cyanovirin-N (CV-N), an 11-kDa protein originally isolated from the cyanobacterium Nostoc ellipsosporum , potently inactivates diverse strains of human immunodeficiency virus type 1 (HIV-1), HIV-2, simian immunodeficiency virus, and feline immunodeficiency virus. It has been well established that the HIV surface envelope glycoprotein gp120 is a molecular target of CV-N. We recently reported that CV-N impaired the binding of virion-associated gp120 to cell-associated CD4 and that CV-N preferentially inhibited binding of the glycosylation-dependent neutralizing monoclonal antibody 2G12 to gp120. However, CV-N did not interfere with the interactions of soluble CD4 (sCD4) with either soluble gp120 (sgp120) or virion-associated gp120. In the present study, we have evaluated the effects of CV-N on the binding of sgp120 to cell-associated CD4 to clarify the experimental basis of the previous binding results, and we further address the detailed mechanism of action of CV-N. Here we present evidence that (i) CV-N impairs both CD4-dependent and CD4-independent binding of sgp120 to the target cells, (ii) CV-N blocks the sCD4-induced binding of sgp120 with cell-associated coreceptor CXCR4, and (iii) CV-N dissociates bound sgp120 from target cells. The results illustrate that the measured effects of CV-N on gp120-CD4 binding interactions depend upon the type of CD4 (soluble or cell associated), but not upon the type of gp120 (soluble or virion associated), employed in the experimental protocol. In addition, this study reinforces that CV-N acts uniquely to prevent essential interactions between the envelope glycoprotein and target cell receptors and further supports the potential broad utility of CV-N as a microbicide to prevent the transmission of HIV and AIDS.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference38 articles.

1. Identification of the residues in human CD4 critical for the binding of HIV.;Arthos J.;Cell,1989

2. Structural characterization of a cross-reactive idiotype shared by monoclonal antibodies specific for the human CD4 molecule.;Attanasio R.;J. Biol. Chem.,1991

3. Recombinant human Fab fragments neutralize human type 1 immunodeficiency virus in vitro.;Barbas C. F.;Proc. Natl. Acad. Sci. USA,1992

4. HIV entry and tropism. When one receptor is not enough.;Berger E. A.;Adv. Exp. Med. Biol.,1998

5. Solution structure of cyanovirin-N, a potent HIV-inactivating protein.;Bewley C. A.;Nat. Struct. Biol.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3