Adjuvanticity and protective immunity elicited by Leishmania donovani antigens encapsulated in positively charged liposomes

Author:

Afrin F1,Ali N1

Affiliation:

1. Leishmania Group, Indian Institute of Chemical Biology, Calcutta.

Abstract

In the search for a leishmaniasis vaccine, extensive studies of cutaneous leishmaniasis have been carried out. Investigations in this regard with the visceral form are limited. As an initial step in the identification of the protective molecules, leishmanial antigens extracted from the membranes of Leishmania donovani promastigotes, alone or in association with liposomes, were evaluated for their immunogenicity and ability to elicit a protective immune response against challenge infection. Intraperitoneal immunization of hamsters and BALB/c mice with the leishmanial antigens conferred protection against infection with the virulent promastigotes. Encapsulation in positively charged liposomes significantly enhanced the protective efficacy of these antigens. The splenic parasite burden of hamsters was reduced by 97% after 6 months of infection. BALB/c mice exhibited 87 and 81.3% protection in the liver and spleen, respectively, after 4 months of infection. These protected animals elicited profound delayed-type hypersensitivity and increased levels of Leishmania-specific immunoglobulin G (IgG) antibodies. Protection in mice also coincided with elevated levels of IgM and IgA antibodies, which decreased with disease progression in the control-infected animals. Although both IgG1 and IgG2a antibodies were present in the sera of infected mice, IgG1 appeared to be the predominant isotype, suggesting a preferential induction of the Th2 type of immune response over that of Th1. Effective stimulation of all the IgG isotypes, particularly IgG2a, after immunization with liposome encapsulated antigens seems to be responsible for the significant levels of resistance against the disease. Taken together, these data indicate a potential for the liposomal antigens as a vaccine which could trigger both humoral and cell-mediated immune responses.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference58 articles.

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3