Affiliation:
1. Unités d'Immunophysiologie Cellulaire (UA 1113), Centre National de la Recherche Scientifique, Paris, France.
Abstract
Leishmania-infected macrophages are potential antigen-presenting cells for CD4+ T lymphocytes, which recognize parasite antigens bound to major histocompatibility complex class II molecules (Ia). However, the intracellular sites where Ia and antigens may interact are far from clear, since parasites grow within the modified lysosomal compartment of the host cell, whereas Ia molecules seem to be targeted to endosomes. To address this question, the expression and fate of Ia molecules were studied by immunocytochemistry in Leishmania amazonensis-infected murine macrophages stimulated with gamma interferon. In uninfected macrophages, Ia molecules were localized on the plasma membrane and in perinuclear vesicles, but they underwent a dramatic redistribution after infection, since most of the intracellular staining was then associated with the periphery of the parasitophorous vacuoles (p.v.) and quite often polarized towards amastigote-binding sites. The Ii invariant chain, which is transiently associated with Ia during their intracellular transport, although well expressed in infected macrophages, apparently did not reach the p.v. Similar findings were observed with macrophages from mice either resistant or highly susceptible to Leishmania infection. In order to determine the origin of p.v.-associated Ia, the fate of plasma membrane, endosomal, and lysosomal markers, detected with specific antibodies, was determined after infection. At 48 h after infection, p.v. was found to exhibit a membrane composition typical of mature lysosomes. Overall, these data suggest that (i) Ia located in p.v. originate from secondary lysosomes involved in the biogenesis of this compartment or circulate in several endocytic organelles, including lysosomes and (ii) p.v. could play a role in antigen processing and presentation. Alternatively, the presence of high amounts of Ia in p.v. could be due to a Leishmania-induced mechanism by means of which this organism may evade the immune response.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献