Phosphatidic Acid Increases Epidermal Growth Factor Receptor Expression by Stabilizing mRNA Decay and by Inhibiting Lysosomal and Proteasomal Degradation of the Internalized Receptor

Author:

Hatton Nathaniel1,Lintz Erin1,Mahankali Madhu1,Henkels Karen M.1,Gomez-Cambronero Julian1ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio, USA

Abstract

ABSTRACT Overexpression of epidermal growth factor receptor (EGFR) is one of the frequent mechanisms implicated in cancer progression, and so is the overexpression of the enzyme phospholipase D (PLD) and its reaction product, phosphatidic acid (PA). However, an understanding of how these signaling molecules interact at the level of gene expression is lacking. Catalytically active PLD enhanced expression of EGFR in human breast cancer cells. Overexpression of the PLD2 isoform increased EGFR mRNA and protein expression. It also negated an EGFR downregulation mediated by small interfering RNA targeting EGFR (siEGFR). Several mechanisms contributed to the alteration in EGFR expression. First was the stabilization of EGFR transcripts as PLD2 delayed mRNA decay, which prolonged their half-lives. Second, RNase enzymatic activity was inhibited by PA. Third, protein stabilization also occurred, as indicated by PLD resistance to cycloheximide-induced EGFR protein degradation. Fourth, PA inhibited lysosomal and proteasomal degradation of internalized EGFR. PLD2 and EGFR colocalized at the cell membrane, and JAK3 phosphorylation at Tyr980/Tyr981 followed receptor endocytosis. Further, the presence of PLD2 increased stabilization of intracellular EGFR in large recycling vesicles at ∼15 min of EGF stimulation. Thus, PLD2-mediated production of PA contributed to the control of EGFR exposure to ligand through a multipronged transcriptional and posttranscriptional program during the out-of-control accumulation of EGFR signaling in cancer cells.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3