The MLL3/MLL4 Branches of the COMPASS Family Function as Major Histone H3K4 Monomethylases at Enhancers

Author:

Hu Deqing1,Gao Xin1,Morgan Marc A.1,Herz Hans-Martin1,Smith Edwin R.1,Shilatifard Ali1

Affiliation:

1. Stowers Institute for Medical Research, Kansas City, Missouri, USA

Abstract

ABSTRACT Histone H3 lysine 4 (H3K4) can be mono-, di-, and trimethylated by members of the COMPASS ( com plex of p roteins as sociated with S et1) family from Saccharomyces cerevisiae to humans, and these modifications can be found at distinct regions of the genome. Monomethylation of histone H3K4 (H3K4me1) is relatively more enriched at metazoan enhancer regions compared to trimethylated histone H3K4 (H3K4me3), which is enriched at transcription start sites in all eukaryotes. Our recent studies of Drosophila melanogaster demonstrated that the Trithorax -related (Trr) branch of the COMPASS family regulates enhancer activity and is responsible for the implementation of H3K4me1 at these regions. There are six COMPASS family members in mammals, two of which, MLL3 (GeneID 58508) and MLL4 (GeneID 8085), are most closely related to Drosophila Trr. Here, we use chromatin immunoprecipitation-sequencing (ChIP-seq) of this class of COMPASS family members in both human HCT116 cells and mouse embryonic stem cells and find that MLL4 is preferentially found at enhancer regions. MLL3 and MLL4 are frequently mutated in cancer, and indeed, the widely used HCT116 cancer cell line contains inactivating mutations in the MLL3 gene. Using HCT116 cells in which MLL4 has also been knocked out, we demonstrate that MLL3 and MLL4 are major regulators of H3K4me1 in these cells, with the greatest loss of monomethylation at enhancer regions. Moreover, we find a redundant role between Mll3 (GeneID 231051) and Mll4 (GeneID 381022) in enhancer H3K4 monomethylation in mouse embryonic fibroblast (MEF) cells. These findings suggest that mammalian MLL3 and MLL4 function in the regulation of enhancer activity and that mutations of MLL3 and MLL4 that are found in cancers could exert their properties through malfunction of these Trr /MLL3/MLL4-spec ific (Trrific) enhancers.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 324 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3