Affiliation:
1. Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
2. Department of Biological Sciences, Columbia University, New York, New York, USA
Abstract
ABSTRACT
Candida albicans
has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between
Candida albicans
and
Pseudomonas aeruginosa
through the action of
P. aeruginosa
-produced phenazines. While phenazines are toxic to
C. albicans
at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-
1
-carboxylate) allowed growth but affected the development of
C. albicans
wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired
C. albicans
growth on nonfermentable carbon sources and led to increased production of fermentation products (ethanol, glycerol, and acetate) in glucose-containing medium, leading us to propose that phenazines specifically inhibited respiration. Methylene blue, another inhibitor of respiration, also prevented the formation of structured colony biofilms. The inhibition of filamentation and colony wrinkling was not solely due to lowered extracellular pH induced by fermentation. Compared to smooth, unstructured colonies, wrinkled colony biofilms had higher oxygen concentrations within the colony, and wrinkled regions of these colonies had higher levels of respiration. Together, our data suggest that the structure of the fungal biofilm promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by bacterial molecules such as phenazines or compounds with similar activities disrupts these pathways. These findings may suggest new ways to limit fungal biofilms in the context of disease.
IMPORTANCE
Many of the infections caused by
Candida albicans
, a major human opportunistic fungal pathogen, involve both morphological transitions and the formation of surface-associated biofilms. Through the study of
C. albicans
interactions with the bacterium
Pseudomonas aeruginosa
, which often coinfects with
C. albicans
, we have found that
P. aeruginosa
-produced phenazines modulate
C. albicans
metabolism and, through these metabolic effects, impact cellular morphology, cell-cell interactions, and biofilm formation. We suggest that the structure of
C. albicans
biofilms promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by phenazines inhibits biofilm development. Our findings not only provide insight into interactions between these species but also provide valuable insights into novel pathways that could lead to the development of new therapies to treat
C. albicans
infections.
Publisher
American Society for Microbiology
Cited by
206 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献