Eco-Evolutionary Dynamics of Episomes among Ecologically Cohesive Bacterial Populations

Author:

Xue Hong1,Cordero Otto X.2,Camas Francisco M.3,Trimble William4,Meyer Folker4,Guglielmini Julien56,Rocha Eduardo P. C.56,Polz Martin F.1

Affiliation:

1. Parsons Laboratory for Environmental Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

2. Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland

3. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

4. Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, USA

5. Microbial Evolutionary Genomics, Institut Pasteur, Paris, France

6. CNRS, UMR3525, Paris, France

Abstract

ABSTRACT Although plasmids and other episomes are recognized as key players in horizontal gene transfer among microbes, their diversity and dynamics among ecologically structured host populations in the wild remain poorly understood. Here, we show that natural populations of marine Vibrionaceae bacteria host large numbers of families of episomes, consisting of plasmids and a surprisingly high fraction of plasmid-like temperate phages. Episomes are unevenly distributed among host populations, and contrary to the notion that high-density communities in biofilms act as hot spots of gene transfer, we identified a strong bias for episomes to occur in free-living as opposed to particle-attached cells. Mapping of episomal families onto host phylogeny shows that, with the exception of all phage and a few plasmid families, most are of recent evolutionary origin and appear to have spread rapidly by horizontal transfer. Such high eco-evolutionary turnover is particularly surprising for plasmids that are, based on previously suggested categorization, putatively nontransmissible, indicating that this type of plasmid is indeed frequently transferred by currently unknown mechanisms. Finally, analysis of recent gene transfer among plasmids reveals a network of extensive exchange connecting nearly all episomes. Genes functioning in plasmid transfer and maintenance are frequently exchanged, suggesting that plasmids can be rapidly transformed from one category to another. The broad distribution of episomes among distantly related hosts and the observed promiscuous recombination patterns show how episomes can offer their hosts rapid assembly and dissemination of novel functions. IMPORTANCE Plasmids and other episomes are an integral part of bacterial biology in all environments, yet their study is heavily biased toward their role as vectors for antibiotic resistance genes. This study presents a comprehensive analysis of all episomes within several coexisting bacterial populations of Vibrionaceae from the coastal ocean and represents the largest-yet genomic survey of episomes from a single bacterial family. The host population framework allows analysis of the eco-evolutionary dynamics at unprecedented resolution, yielding several unexpected results. These include (i) discovery of novel, nonintegrative temperate phages, (ii) revision of a class of episomes, previously termed “nontransmissible,” as highly transmissible, and (iii) surprisingly high evolutionary turnover of episomes, manifest as frequent birth, spread, and loss.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3