Localization of Mammalian Orthoreovirus Proteins to Cytoplasmic Factory-Like Structures via Nonoverlapping Regions of μNS

Author:

Miller Cathy L.12,Arnold Michelle M.13,Broering Teresa J.1,Hastings Craig E.2,Nibert Max L.13

Affiliation:

1. Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue

2. Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011

3. Program in Virology, Division of Medical Sciences, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115

Abstract

ABSTRACT Virally induced structures called viral factories form throughout the cytoplasm of cells infected with mammalian orthoreoviruses (MRV). When expressed alone in cells, MRV nonstructural protein μNS forms factory-like structures very similar in appearance to viral factories, suggesting that it is involved in forming the structural matrix of these structures. μNS also associates with MRV core particles; the core proteins μ2, λ1, λ2, λ3, and σ2; and the RNA-binding nonstructural protein σNS. These multiple associations result in the recruitment or retention of these viral proteins or particles at factory-like structures. In this study, we identified the regions of μNS necessary and sufficient for these associations and additionally examined the localization of viral RNA synthesis in infected cells. We found that short regions within the amino-terminal 220 residues of μNS are necessary for associations with core particles and necessary and sufficient for associations with the proteins μ2, λ1, λ2, σ2, and σNS. We also found that only the λ3 protein associates with the carboxyl-terminal one-third of μNS and that viral RNA is synthesized within viral factories. These results suggest that μNS may act as a cytoplasmic scaffolding protein involved in localizing and coordinating viral replication or assembly intermediates for the efficient production of progeny core particles during MRV infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3