Structural insights into the interaction between adenovirus C5 hexon and human lactoferrin

Author:

Dhillon Arun1,Persson B. David2,Volkov Alexander N.34,Sülzen Hagen15,Kádek Alan67,Pompach Petr8,Kereïche Sami19,Lepšík Martin1,Danskog Katarina10,Uetrecht Charlotte11,Arnberg Niklas10,Zoll Sebastian1ORCID

Affiliation:

1. Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic

2. Swedish Veterinary Agency, Uppsala, Sweden

3. VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium

4. Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), Brussels, Belgium

5. Faculty of Science, Charles University, Prague, Czech Republic

6. Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic

7. Leibniz Institute of Virology (LIV), Hamburg, Germany

8. Biotechnology and Biomedical Center of the Academy of Sciences and Charles University in Vestec, Vestec, Czech Republic

9. First Faculty of Medicine, Charles University, Prague, Czech Republic

10. Department of Clinical Microbiology, Umeå University, Umeå, Sweden

11. Department of Health Sciences and Biomedicine, Faculty V: School of Life Sciences, CSSB Centre for Structural Systems Biology, Deutsches Elektronen Synchrotron DESY and Leibniz Institute of Virology, Hamburg, University of Siegen, Siegen, Germany

Abstract

ABSTRACT Adenovirus (AdV) infection of the respiratory epithelium is common but poorly understood. Human AdV species C types, such as HAdV-C5, utilize the Coxsackie-adenovirus receptor (CAR) for attachment and subsequently integrins for entry. CAR and integrins are however located deep within the tight junctions in the mucosa where they would not be easily accessible. Recently, a model for CAR-independent AdV entry was proposed. In this model, human lactoferrin (hLF), an innate immune protein, aids the viral uptake into epithelial cells by mediating interactions between the major capsid protein, hexon, and yet unknown host cellular receptor(s). However, a detailed understanding of the molecular interactions driving this mechanism is lacking. Here, we present a new cryo-EM structure of HAdV-5C hexon at high resolution alongside a hybrid structure of HAdV-5C hexon complexed with human lactoferrin (hLF). These structures reveal the molecular determinants of the interaction between hLF and HAdV-C5 hexon. hLF engages hexon primarily via its N-terminal lactoferricin (Lfcin) region, interacting with hexon’s hypervariable region 1 (HVR-1). Mutational analyses pinpoint critical Lfcin contacts and also identify additional regions within hLF that critically contribute to hexon binding. Our study sheds more light on the intricate mechanism by which HAdV-C5 utilizes soluble hLF/Lfcin for cellular entry. These findings hold promise for advancing gene therapy applications and inform vaccine development. IMPORTANCE Our study delves into the structural aspects of adenovirus (AdV) infections, specifically HAdV-C5 in the respiratory epithelium. It uncovers the molecular details of a novel pathway where human lactoferrin (hLF) interacts with the major capsid protein, hexon, facilitating viral entry, and bypassing traditional receptors such as CAR and integrins. The study’s cryo-EM structures reveal how hLF engages hexon, primarily through its N-terminal lactoferricin (Lfcin) region and hexon’s hypervariable region 1 (HVR-1). Mutational analyses identify critical Lfcin contacts and other regions within hLF vital for hexon binding. This structural insight sheds light on HAdV-C5’s mechanism of utilizing soluble hLF/Lfcin for cellular entry, holding promise for gene therapy and vaccine development advancements in adenovirus research.

Funder

Přírodovědecká Fakulta, Univerzita Karlova

EC | Horizon 2020 Framework Programme

Publisher

American Society for Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3