Multigenic Control of Disease Severity after Virulent Mycobacterium tuberculosis Infection in Mice

Author:

Sánchez Fabio1,Radaeva Tatiana V.2,Nikonenko Boris V.2,Persson Ann-Sophie1,Sengul Selim1,Schalling Martin1,Schurr Erwin3,Apt Alexander S.2,Lavebratt Catharina1

Affiliation:

1. Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden

2. Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow 107564, Russia

3. McGill Center for the Study of Host Resistance, Montreal General Hospital, Montreal, H3G 1A4 Quebec, Canada

Abstract

ABSTRACT Following challenge with virulent Mycobacterium tuberculosis , mice of the I/St inbred strain exhibit shorter survival time, more rapid body weight loss, higher mycobacterial loads in organs, and more severe lung histopathology than mice of the A/Sn strain. We previously performed a genome-wide scan for quantitative trait loci (QTLs) that control the severity of M. tuberculosis -triggered disease in [(A/Sn × I/St) F1 × I/St] backcross-1 (BC1) mice and described several QTLs that are significantly or suggestively linked to body weight loss. In the present study we expanded our analysis by including the survival time phenotype and by genotyping 406 (A/Sn × I/St) F2 mice for the previously identified chromosomal regions of interest. The previously identified 12-cM-wide QTL on distal mouse chromosome 3 was designated tbs1 ( t u b erculosis s everity 1 ); the location of the QTL on proximal chromosome 9 was narrowed to a 9-cM interval, and this QTL was designated tbs2 . Allelic variants of the tbs2 locus appeared to be involved in control of both body weight loss and survival time. Also, the data strongly suggested that a QTL located in the vicinity of the H-2 complex on chromosome 17 is involved in control of tuberculosis in mice of both genders, whereas the tbs1 locus seemed to have an effect on postinfection body weight loss in female mice. Interestingly, these loci appeared to interact with each other, which suggests that there might be a basic genetic network for the control of intracellular parasites. Overall, linkage data reported here for F2 mice are in agreement with, and add to, our previous findings concerning the control of M. tuberculosis -triggered disease in the BC1 segregation.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3