Induction of Osteoclastogenesis and Matrix Metalloproteinase Expression by the Lipooligosaccharide of Treponema denticola

Author:

Choi Bong-Kyu12,Lee Hyun Jung1,Kang Jung Hwa1,Jeong Gook Jin1,Min Cheon Ki1,Yoo Yun-Jung13

Affiliation:

1. Department of Oral Biology

2. Brain Korea 21 Project for Medical Sciences, Yonsei University, Seoul, Korea

3. Oral Science Research Center, College of Dentistry

Abstract

ABSTRACT Alveolar bone destruction is a characteristic feature of periodontitis. Treponema denticola is known to be involved in periodontitis. To elucidate the role of T. denticola in alveolar bone destruction in periodontitis, the effects of lipooligosaccharide (LOS) from T. denticola on osteoclast formation and on expression of osteoclast differentiation factor (ODF) and osteoprotegerin (OPG) mRNAs were examined in a coculture system by using mouse calvaria and bone marrow cells. In addition, the effect of T. denticola LOS on expression of matrix metalloproteinases (MMPs), which are involved in bone resorption, was estimated in mouse calvaria-derived osteoblastic cells. When the mouse calvaria and bone marrow cells were challenged with LOS (0.1 to 10 μg/ml) for 4 days, the number of tartrate-resistant acid phosphatase-positive multinucleated cells increased in a dose-dependent manner. The expression of ODF mRNA increased, while OPG mRNA expression decreased. Polymyxin B changed the effect of LOS (10 μg/ml) on ODF and OPG mRNA expression to the control level. LOS (10 μg/ml) stimulated prostaglandin E 2 (PGE 2 ) production in the cocultures. Adding indomethacin, an inhibitor of prostaglandin synthesis, resulted in a reduction in the number of osteoclasts induced by LOS and eliminated the effect of T. denticola LOS on ODF and OPG mRNA expression. T. denticola LOS increased the levels of mRNAs encoding MMP-3, -8, -9, -10, -13, and -14. Expression of one of these mRNAs, MMP-9 mRNA, was significantly induced by T. denticola LOS. These findings suggest that LOS from T. denticola stimulates osteoclastogenesis and MMP expression. Up-regulation of ODF and down-regulation of OPG by a PGE 2 -dependent mechanism were involved in the osteoclastogenesis induced by T. denticola LOS.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3