The Ability To Replicate in Macrophages Is Conserved between Yersinia pestis and Yersinia pseudotuberculosis

Author:

Pujol Céline1,Bliska James B.1

Affiliation:

1. Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, State University of New York at Stony Brook, Stony Brook, New York 11794-5222

Abstract

ABSTRACT Yersinia pestis , the agent of plague, has arisen from a less virulent pathogen, Yersinia pseudotuberculosis , by a rapid evolutionary process. Although Y. pestis displays a large number of virulence phenotypes, it is not yet clear which of these phenotypes descended from Y. pseudotuberculosis and which were acquired independently. Y. pestis is known to replicate in macrophages, but there is no consensus in the literature on whether Y. pseudotuberculosis shares this property. We investigated whether the ability to replicate in macrophages is common to Y. pestis and Y. pseudotuberculosis or is a unique phenotype of Y. pestis . We also examined whether a chromosomal type III secretion system (TTSS) found in Y. pestis is present in Y. pseudotuberculosis and whether this system is important for replication of Yersinia in macrophages. A number of Y. pestis and Y. pseudotuberculosis strains of different biovars and serogroups, respectively, were tested for the ability to replicate in primary murine macrophages. Two Y. pestis strains (EV766 and KIM10 + ) and three Y. pseudotuberculosis strains (IP2790c, IP2515c, and IP2666c) were able to replicate in macrophages with similar efficiencies. Only one of six strains tested, the Y. pseudotuberculosis YPIII(p ) strain, was defective for intracellular replication. Thus, the ability to replicate in macrophages is conserved in Y. pestis and Y. pseudotuberculosis . Our results also indicate that a homologous TTSS is present on the chromosomes of Y. pestis and Y. pseudotuberculosis and that this secretion system is not required for replication of these bacteria in macrophages.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference42 articles.

Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3