Affiliation:
1. Union Carbide Corp., Research and Development Department, South Charleston, West Virginia 25303
Abstract
Of 15 species of fungi examined for their ability to hydroxylate biphenyl, 10 produced 4-hydroxybiphenyl. Seven of the 10 also produced 4,4′-dihydroxybiphenyl. The most efficient strains,
Absidia pseudocylindrospora
NRRL 2770 and
Absidia
sp. NRRL 1341, were more closely examined to determine their growth characteristics and the kinetics of biphenyl hydroxylation in batch fermentation. In the absence of biphenyl,
A. pseudocylindrospora
2770 and
Absidia
sp. 1341 grew about as rapidly and efficiently in a defined glucose minimal medium as in a complex medium. Substrate yield coefficients for glucose in both media were 0.4 to 0.5 g of biomass per g of glucose, and the specific growth rate was about 0.17 h
−1
(doubling time, about 4 h). In this unoptimized system, 10 to 15 g of biomass per liter (dry weight) could be produced, using a defined salt solution and glucose as sole carbon and energy source. In the presence of biphenyl, growth was inhibited, more so for strain 1341 than for strain 2770. However, the specific activity for biphenyl hydroxylation (milligrams of biphenol per gram of biomass) was about 3.5 times greater for strain 1341. Furthermore, biphenyl hydroxylation appeared to require the presence of an oxidizable carbon and energy source (and perhaps growth) to proceed and, at least for strain 1341, hydroxylation seemed to be more efficient in the complex medium.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献