Microbial Production of 4,4′-Dihydroxybiphenyl: Biphenyl Hydroxylation by Fungi

Author:

Schwartz Robert D.1,Williams A. L.1,Hutchinson D. B.1

Affiliation:

1. Union Carbide Corp., Research and Development Department, South Charleston, West Virginia 25303

Abstract

Of 15 species of fungi examined for their ability to hydroxylate biphenyl, 10 produced 4-hydroxybiphenyl. Seven of the 10 also produced 4,4′-dihydroxybiphenyl. The most efficient strains, Absidia pseudocylindrospora NRRL 2770 and Absidia sp. NRRL 1341, were more closely examined to determine their growth characteristics and the kinetics of biphenyl hydroxylation in batch fermentation. In the absence of biphenyl, A. pseudocylindrospora 2770 and Absidia sp. 1341 grew about as rapidly and efficiently in a defined glucose minimal medium as in a complex medium. Substrate yield coefficients for glucose in both media were 0.4 to 0.5 g of biomass per g of glucose, and the specific growth rate was about 0.17 h −1 (doubling time, about 4 h). In this unoptimized system, 10 to 15 g of biomass per liter (dry weight) could be produced, using a defined salt solution and glucose as sole carbon and energy source. In the presence of biphenyl, growth was inhibited, more so for strain 1341 than for strain 2770. However, the specific activity for biphenyl hydroxylation (milligrams of biphenol per gram of biomass) was about 3.5 times greater for strain 1341. Furthermore, biphenyl hydroxylation appeared to require the presence of an oxidizable carbon and energy source (and perhaps growth) to proceed and, at least for strain 1341, hydroxylation seemed to be more efficient in the complex medium.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3