Structure and function of conjugative pili: monoclonal antibodies as probes for structural variants of F pili

Author:

Grossman T H1,Frost L S1,Silverman P M1

Affiliation:

1. Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461.

Abstract

The lac-tra operon fusion plasmid pTG801 contains the known F plasmid DNA transfer (tra) genes required by Escherichia coli to elaborate functional F pili (T. Grossman and P. M. Silverman, J. Bacteriol. 171:650-656, 1989). Here, we show that these pili are actually structural variants of normal F pili and that the F plasmid must contain additional genes that affect pilus structure and function. We confirmed a previous report that two monoclonal antibodies that recognize epitopes at and near the amino terminus of F pilin do not decorate the sides of normal F pili, as determined by immunogold electron microscopy. However, both antibodies laterally decorated pTG801 pili. The epitope for one of the antibodies has been shown to include the amino-terminal acetyl group of F pilin, which must therefore also be present on pTG801 pilin. Normal antibody staining was restored to pTG801 pili when cells contained, in addition to pTG801, the compatible plasmid pRS31, which must therefore include at least one gene affecting F-pilus structure. One candidate, traD, was excluded as the sole such gene, since traD+ derivatives of a pTG801 strain still elaborated pili that could be laterally decorated with antibody. Moreover, although traD alone restored RNA bacteriophage R17 infectivity to pTG801 cells, as expected, it did not mimic pRS31 in restoring to pTG801 pili other characteristics of normal F pili. We conclude that pRS31 contains as yet uncharacterized genes required for elaboration of structurally normal F pili. Finally, we identified vesicular material, especially abundant in cultures of pTG801 transformants, that stained heavily with the anti-F-pilin monoclonal antibodies. This material may reflect the inner membrane pool of F pilin.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3