Affiliation:
1. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.
Abstract
The process of flagellar assembly in Salmonella typhimurium was investigated by using temperature-sensitive mutants. The mutants were grown at the restrictive temperature and then at the permissive temperature, with radiolabel supplied in the first phase of the experiment and not the second, or vice versa. Flagellar hook-basal body complexes were then purified and analyzed by gel electrophoresis and autoradiography. The extent to which a given protein was labeled in the two phases of the experiment provided information as to whether it preceded or followed the block caused by the mutant protein. We conclude the following concerning flagellar assembly. The M-ring protein (FliF) is stably incorporated in the earliest stage detected, along with two previously unknown proteins, with apparent molecular masses of 23 and 26 kilodaltons, respectively, and possibly one of the switch components, FliG. Independent of that event and all other events, the P-ring and L-ring proteins (FlgI and FlgH) are synthesized and exported to the periplasm and outer membrane by the primary cellular export pathway. Rod assembly occurs by export (via the flagellum-specific pathway) of subunits of four proteins, FlgB, FlgC, FlgF, and FlgG, and their incorporation, probably in that order, into the rod structure; this stage requires the flhA and fliI genes, perhaps because they encode part of the export apparatus. Once rod assembly is complete, the FlgI and FlgH proteins assemble around the rod to form the P and L rings. The rod structure, which is only metastable while it is being constructed, becomes stable upon P-ring addition. Export (via the flagellum-specific pathway) and assembly of hook protein, hook-associated proteins, and filament protein then occur successively. A number of flagellar proteins, whose genetic origin and structural role are not yet known, were identified on the basis of their dependence on the flagellar master operon for expression.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
117 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献