Direct Enzymatic Repair of Deoxyribonucleic Acid Single-Strand Breaks in Dormant Spores

Author:

Durban E.1,Grecz N.1,Farkas J.1

Affiliation:

1. Biology Department, Illinois Institute of Technology, Chicago, Illinois 60616

Abstract

With the alkaline sucrose gradient centrifugation method, it was found that dormant spores of Clostridium botulinum subjected to 300 krads of gamma radiation showed a distinct decrease in deoxyribonucleic acid (DNA) fragment size, indicating induction of single-strand breaks (SSB). A two- to threefold difference in radiation resistance of spores of two strains of C. botulinum , 33A (37% survival dose [ D 37 ] = 110 krads) and 51B ( D 37 = 47 krads), was accompanied by relatively larger DNA fragments (molecular weight 7.9 × 10 7 ) obtained during extraction from the radiation-resistant strain 33A and smaller DNA fragments (molecular weight 1.8 × 10 7 ) obtained under identical conditions from radiation-sensitive strain 51B. The apparent number of DNA SSB produced by 300 krads in strains 33A and 51B was 0.37 and 3.50, respectively, per 10 8 daltons of DNA. Addition of 0.02 M ethylenediaminetetraacetic acid (EDTA) to spore suspensions during irradiation doubled the apparent number of SSB in strain 33A but had no effect on strain 51B. In vivo, 0.02 M EDTA present during irradiation to 100 to 300 krads decreased survival of spores of 33A by about 30% but had little or no effect on 51B. Survival of 33A was also reduced by about 45% when the spores were irradiated while frozen in dry ice (−75 C) and, after irradiation, immediately exposed to 0.03 M EDTA for 1 h to inhibit repair in the dormant spores. These results suggest that the highly radiation-resistant strain 33A may be able to accomplish repair of SSB during irradiation or after irradiation under nonphysiological conditions, i.e., in the dormant state. This repair can be inhibited by EDTA. Sedimentation patterns show that DNA from spores of both strains 33A and 51B did not show any postirradiation repair during the first 6 h of germination, as opposed to Bacillus subtilis spores, which exhibit repair immediately after germination. These observations suggest the existence of direct repair in physiological dormant spores of strain 33A in the cryptobiotic resting state in the absence of germination. The repair seems to be similar to that of polynucleotide ligase activity shown to be operative in some vegetative cells. Apparently radiation-sensitive strains such as 51B and B. subtilis are generally poor in DNA repair enzyme activity under conditions of spore dormancy, which may account for the approximately threefold difference in radiation sensitivity or DNA fragility of different strains, or both.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sporulation, Meiosis, and Rejuvenation;Healthy Ageing and Longevity;2024

2. Dark survival in a warming world;Proceedings of the Royal Society B: Biological Sciences;2013-03-22

3. RNA Dynamics in Aging Bacterial Spores;Cell;2012-01

4. Microbial susceptibility and resistance to chemical and physical agents;Topley & Wilson's Microbiology and Microbial Infections;2010-03-15

5. Tolerance of spores to ionizing radiation: mechanisms of inactivation, injury and repair;Journal of Applied Bacteriology;1994-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3