Conserved Cysteines of the Human Immunodeficiency Virus Type 1 Protease Are Involved in Regulation of Polyprotein Processing and Viral Maturation of Immature Virions

Author:

Davis David A.1,Yusa Keisuke2,Gillim Laura A.1,Newcomb Fonda M.1,Mitsuya Hiroaki2,Yarchoan Robert1

Affiliation:

1. HIV and AIDS Malignancy Branch1 and

2. Experimental Retrovirology Section, Medicine Branch,2 National Cancer Institute, Bethesda, Maryland 20892

Abstract

ABSTRACT We investigated the role of the two highly conserved cysteine residues, cysteines 67 and 95, of the human immunodeficiency virus type 1 (HIV-1) protease in regulating the activity of that protease during viral maturation. To this end, we generated four HIV-1 molecular clones: the wild type, containing both cysteine residues; a protease mutant in which the cysteine at position 67 was replaced by an alanine (C67A); a C95A protease mutant; and a double mutant (C67A C95A). When immature virions were produced in the presence of an HIV-1 protease inhibitor, KNI-272, and the inhibitor was later removed, limited polyprotein processing was observed for wild-type virion preparations over a 20-h period. Treatment of immature wild-type virions with the reducing agent dithiothreitol considerably improved the rate and extent of Gag processing, suggesting that the protease is, in part, reversibly inactivated by oxidation of the cysteine residues. In support of this, C67A C95A virions processed Gag up to fivefold faster than wild-type virions in the absence of a reducing agent. Furthermore, oxidizing agents, such as H 2 O 2 and diamide, inhibited Gag processing of wild-type virions, and this effect was dependent on the presence of cysteine 95. Electron microscopy revealed that a greater percentage of double-mutant virions than wild-type virions developed a mature-like morphology on removal of the inhibitor. These studies provide evidence that under normal culture conditions the cysteines of the HIV-1 protease are susceptible to oxidation during viral maturation, thus preventing immature virions from undergoing complete processing following their release. This is consistent with the cysteines being involved in the regulation of viral maturation in cells under oxidative stress.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3