Gut Microbiota Colonization and Transmission in the Burying Beetle Nicrophorus vespilloides throughout Development

Author:

Wang Yin1,Rozen Daniel E.1

Affiliation:

1. Institute of Biology, Leiden University, Leiden, The Netherlands

Abstract

ABSTRACT Carrion beetles in the genus Nicrophorus rear their offspring on decomposing carcasses where larvae are exposed to a diverse community of decomposer bacteria. Parents coat the carcass with antimicrobial secretions prior to egg hatch (defined as prehatch care) and also feed regurgitated food, and potentially bacteria, to larvae throughout development (defined as full care). Here, we partition the roles of prehatch and posthatch parental care in the transmission and persistence of culturable symbiotic bacteria to larvae. Using three treatment groups (full care, prehatch care only, and no care), we found that larvae receiving full care are predominantly colonized by bacteria resident in the maternal gut while larvae receiving no care are colonized with bacteria from the carcass. More importantly, larvae receiving only prehatch care were also predominantly colonized by maternal bacteria; this result indicates that parental treatment of the carcass, including application of bacteria to the carcass surface, is sufficient to ensure symbiont transfer even in the absence of direct larval feeding. Later in development, we found striking evidence that pupae undergo an aposymbiotic stage, after which they are recolonized at eclosion with bacteria similar to those found on the molted larval cuticle and on the wall of the pupal chamber. Our results clarify the importance of prehatch parental care for symbiont transmission in Nicrophorus vespilloides and suggest that these bacteria successfully outcompete decomposer bacteria during larval and pupal gut colonization. IMPORTANCE Here, we examine the origin and persistence of the culturable gut microbiota of larvae in the burying beetle Nicrophorus vespilloides . This insect is particularly interesting for this study because larvae are reared on decomposing vertebrate carcasses, where they are exposed to high densities of carrion-decomposing microbes. Larvae also receive extensive parental care in the form of carcass preservation and direct larval feeding. We find that parents transmit their gut bacteria to larvae both directly, through regurgitation, and indirectly via their effects on the carcass. In addition, we find that larvae become aposymbiotic during pupation but are recolonized apparently from bacteria shed onto the insect cuticle before adult eclosion. Our results highlight the diverse interactions between insect behavior and development on microbiota composition. They further suggest that competitive interactions mediate the bacterial composition of Nicrophorus larvae together with or apart from the influence of beetle immunity, suggesting that the bacterial communities of these insects may be highly coevolved with those of their host species.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3