Stimulation of gp91 Phagocytic Oxidase and Reactive Oxygen Species in Neutrophils by an Avirulent Salmonella enterica Serovar Infantis Strain Protects Gnotobiotic Piglets from Lethal Challenge with Serovar Typhimurium Strain F98 without Inducing Intestinal Pathology

Author:

Foster Neil1,Hulme Scott1,Lovell Margaret1,Reed Katharine2,Barrow Paul1

Affiliation:

1. Institute for Animal Health, Compton Laboratory, Compton RG20 7NN, United Kingdom

2. Department of Clinical Pharmacology, Radcliffe Infirmary, University of Oxford, Oxford OX2 6HE, United Kingdom

Abstract

ABSTRACT Preinoculation of susceptible 5-day-old gnotobiotic piglets with Salmonella enterica serovar Infantis strain 1326/28Φ r stimulates neutrophil migration into the intestine, which rapidly protects the pigs against a subsequent (normally lethal) challenge with S. enterica serovar Typhimurium strain F98. Here we show that inoculation with either 1326/28Φ r or F98 activated reactive oxygen species (ROS) in neutrophils via NADPH pathways in vivo and in vitro and that the survival of both Salmonella strains was increased if neutrophils were cocultured with the ROS inhibitor N -acetylcysteine (captopril). Neither F98 nor 1326/28Φ r significantly increased reactive nitrogen species (RNS) levels in neutrophils isolated from uninfected pigs. Our results indicate the following: (i) rapid protection of highly susceptible gnotobiotic piglets against F98-induced gastroenteritis by preinoculation with 1326/28Φ r is likely to be due to stimulation of ROS-producing neutrophils in the intestinal epithelium prior to challenge with the lethal strain; (ii) pathological lesions of the intestine during severe gastroenteritis are not necessarily induced by neutrophil migration per se; and (iii) if neutrophil migration into the intestine is responsible for pathology, then neither increased production of ROS or RNS (in pigs inoculated with the lethal strain) nor reduced production (in protected pigs in which pathological lesions are ameliorated by preinoculation with 1326/28Φ r ) can account for this phenomenon.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3