Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease

Author:

Rouet P1,Smih F1,Jasin M1

Affiliation:

1. Cell Biology and Genetics Program, Sloan-Kettering Institute, New York, New York.

Abstract

To maintain genomic integrity, double-strand breaks (DSBs) in chromosomal DNA must be repaired. In mammalian systems, the analysis of the repair of chromosomal DSBs has been limited by the inability to introduce well-defined DSBs in genomic DNA. In this study, we created specific DSBs in mouse chromosomes for the first time, using an expression system for a rare-cutting endonuclease, I-SceI. A genetic assay has been devised to monitor the repair of DSBs, whereby cleavage sites for I-SceI have been integrated into the mouse genome in two tandem neomycin phosphotransferase genes. We find that cleavage of the I-SceI sites is very efficient, with at least 12% of stably transfected cells having at least one cleavage event and, of these, more than 70% have undergone cleavage at both I-SceI sites. Cleavage of both sites in a fraction of clones deletes 3.8 kb of intervening chromosomal sequences. We find that the DSBs are repaired by both homologous and nonhomologous mechanisms. Nonhomologous repair events frequently result in small deletions after rejoining of the two DNA ends. Some of these appear to occur by simple blunt-ended ligation, whereas several others may occur through annealing of short regions of terminal homology. The DSBs are apparently recombinogenic, stimulating gene targeting of a homologous fragment by more than 2 orders of magnitude. Whereas gene-targeted clones are nearly undetectable without endonuclease expression, they represent approximately 10% of cells transfected with the I-SceI expression vector. Gene targeted clones are of two major types, those that occur by two-sided homologous recombination with the homologous fragment and those that occur by one-sided homologous recombination. Our results are expected to impact a number of areas in the study of mammalian genome dynamics, including the analysis of the repair of DSBs and homologous recombination and, potentially, molecular genetic analyses of mammalian genomes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference61 articles.

1. Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme;Andersson S.;J. Biol. Chem.,1989

2. Telomere directed fragmentation of mammalian chromosomes;Barnett M. A.;Nucleic Acids Res.,1993

3. Bennett R. and M. Jasin. Unpublished data.

4. Gene replacement with one-sided homologous recombination;Berinstein N.;Mol. Cell. Biol.,1992

5. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae;Cao L.;Cell,1990

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3