Author:
Singh N,Zoeller R A,Tykocinski M L,Lazarow P B,Tartakoff A M
Abstract
A single metabolic path leading to synthesis of ether lipids is known in animal cells, the major products of which are plasmalogens. To learn whether this peroxisomal path is also responsible for the synthesis of base-resistant lipid components of glycosylphosphoinositol (GPI)-anchored membrane proteins, we have investigated the structure of anchor precursor mannolipids both in wild-type cells (CHO-K1 and a macrophage-like line, RAW 264.7) and in two corresponding mutant cells in which ether lipid biosynthesis is severely impaired. We observe that the precursor mannolipids of both the wild-type and mutant cells do not include alkylglycerol. Nevertheless, both wild-type and mutant cells express cell surface GPI-anchored placental alkaline phosphatase (AP) which includes alkali-resistant hydrophobic chains in its anchor moiety. Thus, (i) in normal AP GPI anchor synthesis, any ether-linked substituents must be added either immediately before, during, or after anchor addition to AP, and (ii) the classical peroxisomal path for ether lipid synthesis appears not to contribute to the synthesis of GPI anchors.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献