Role of the Cell Wall Integrity and Filamentous Growth Mitogen-Activated Protein Kinase Pathways in Cell Wall Remodeling during Filamentous Growth

Author:

Birkaya Barbara1,Maddi Abhiram1,Joshi Jyoti1,Free Stephen J.1,Cullen Paul J.1

Affiliation:

1. Department of Biological Sciences, State University of New York at Buffalo, Amherst, New York 14260-1300

Abstract

ABSTRACT Many fungal species including pathogens exhibit filamentous growth (FG) as a means of foraging for nutrients. Genetic screens were performed to identify genes required for FG in the budding yeast Saccharomyces cerevisiae . Genes encoding proteins with established functions in transcriptional activation ( MCM1 , MAT α 2 , PHD1 , MSN2 , SIR4 , and HMS2 ), cell wall integrity ( MPT5 , WSC2 , and MID2 ), and cell polarity ( BUD5 ) were identified as potential regulators of FG. The transcription factors MCM1 and MAT α 2 induced invasive growth by promoting diploid-specific bipolar budding in haploid cells. Components of the cell wall integrity pathway including the cell surface proteins Slg1p/Wsc1p, Wsc2p, Mid2p, and the mitogen-activated protein kinase (MAPK) Slt2p/Mpk1p contributed to multiple aspects of the FG response including cell elongation, cell-cell adherence, and agar invasion. Mid2p and Wsc2p stimulated the FG MAPK pathway through the signaling mucin Msb2p and components of the MAPK cascade. The FG pathway contributed to cell wall integrity in parallel with the cell wall integrity pathway and in opposition with the high osmolarity glycerol response pathway. Mass spectrometry approaches identified components of the filamentous cell wall including the mucin-like proteins Msb2p, Flo11p, and subtelomeric (silenced) mucin Flo10p. Secretion of Msb2p, which occurs as part of the maturation of the protein, was inhibited by the ß-1,3-glucan layer of the cell wall, which highlights a new regulatory aspect to cell wall remodeling in this organism. Disruption of ß-1,3-glucan linkages induced mucin shedding and resulted in defects in cell-cell adhesion and invasion of cells into the agar matrix.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3