Analysis of the promoter and regulatory sequences of an oxygen-regulated bch operon in Rhodobacter capsulatus by site-directed mutagenesis

Author:

Ma D1,Cook D N1,O'Brien D A1,Hearst J E1

Affiliation:

1. Department of Chemistry, University of California, Berkeley.

Abstract

The biosynthesis of pigments (carotenoids and bacteriochlorophylls) in the photosynthetic bacterium Rhodobacter capsulatus is regulated by the oxygen concentration in the environment. However, the mechanism of this regulation has remained obscure. In this study, transcriptional fusions of the bchCXYZ promoter region to lacZ were used to identify the promoter and regulatory sequences governing transcription of these bacteriochlorophyll biosynthesis genes. The promoter region was identified in vivo by making deletions and site-directed mutations. The 50 bp upstream of the promoter region was shown to be required for the oxygen-dependent transcriptional regulation of bchCXYZ. A previously described palindrome sequence is also likely involved in the regulation. A gel mobility shift assay further defined the interaction of transcription regulators with these DNA sequence elements in vitro and demonstrated that a DNA-protein complex is formed at this promoter region. Since the suggested promoter sequence and the palindrome sequence are found upstream of several other bch and crt operons, these sequences may be responsible for regulating oxygen-dependent pigment biosynthesis at the level of transcription in R. capsulatus. In addition, these cis-acting DNA elements are not found upstream of puh and puf operons, which encode the structural polypeptides of the reaction center and light-harvesting I complexes. This observation supports the model of different regulatory mechanism for the pigment biosynthesis enzymes and structural polypeptides required for the production of the photosynthetic apparatus.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference29 articles.

1. Nucleotide sequence, organization, and nature of protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus;Armstrong G. A.;Mol. Gen. Genet.,1989

2. Armstrong G. A. D. N. Cook D. Ma M. Alberti D. H. Burke and J. E. Hearst. J. Gen. Microbiol. in press.

3. Analysis of the Rhodobacter capsulatus puf operon;Bauer C. E.;J. Biol. Chem.,1988

4. .Burke D. H. M. Alberti and J. E. Hearst. J. Bacteriol. in press.

5. P-Galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast;Casadaban M.;Methods Enzymol.,1983

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3