Abstract
Diphtherial toxin is produced in maximal yields by Corynebacterium diphtheriae (C7(beta tox+) only when iron is present in growth-limiting amounts. Toxin production is markedly decreased under high-iron conditions. We studied the role of the bacteriophage beta genome in this apparent regulation of toxin production by iron. Using a passive immune hemolysis assay to detect toxin antigen production in individual plaques, we identified rare phage mutants that were toxinogenic in high-iron medium. Lysogenic derivatives of C. diphtheriae C7 harboring such phage mutants were constructed. The lysogens were compared with wild-type strain C7(beta) for their ability to produce toxin in deferrated liquid medium containing varying amounts of added iron. Quantitative tests for extracellular toxin were performed by competitive-binding radioimmunoassays. We identified phenotypically distinct mutant strains that produced slightly, moderately, or greatly increased yields of toxin antigen under high-iron conditions. The toxin produced by the mutant lysogens was biologically active and immunochemically indistinguishable from wild-type toxin. Complementation experiments demonstrated that the phage mutation designated tox-201 had a cis-dominant effect on the expression of the toxin structural gene of phage beta. The characteristics of the tox-201 mutation suggest that it defines a regulatory locus of phage beta that is involved in control of toxinogenesis by iron in C. diphtheriae.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献