Mycobacterium smegmatis RoxY Is a Repressor of oxyS and Contributes to Resistance to Oxidative Stress and Bactericidal Ubiquitin-Derived Peptides

Author:

Daugherty Aaron1,Powers Katelyn M.1,Standley Melissa S.1,Kim Cathy S.1,Purdy Georgiana E.1

Affiliation:

1. Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon 97239

Abstract

ABSTRACT The mycobactericidal properties of macrophages include the generation of reactive oxygen intermediates and the delivery of bacteria to a hydrolytic lysosome enriched in bactericidal ubiquitin-derived peptides (Ub-peptides). To better understand the interactions of ubiquitin-derived peptides with mycobacteria and identify putative mycobacterial intrinsic resistance mechanisms, we screened for transposon mutants with increased susceptibility to the bactericidal Ub-peptide Ub2. We isolated 27 Mycobacterium smegmatis mutants that were hypersusceptible to Ub2. Two mutants were isolated that possessed mutations in the msmeg _ 0166 gene, which encodes a transcriptional regulator. The msmeg _ 0166 mutants were also hypersusceptible to other host antimicrobial peptides and oxidative stress. In characterizing msmeg _ 0166 , we found that it encodes a r epressor of oxy S , and therefore we have renamed the gene roxY . We demonstrate that RoxY and OxyS contribute to M. smegmatis resistance to oxidative stress. An ahpD transposon mutant was also isolated in our screen for Ub-peptide hypersusceptibility. Overexpression of oxyS in M. smegmatis reduced transcription of the ahpCD genes, which encode a peroxide detoxification system. Our data indicate that RoxY, OxyS, and AhpD play a role in the mycobacterial oxidative stress response and are important for resistance to host antimicrobial peptides.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3