Affiliation:
1. Eijkman-Winkler Institute for Microbiology, Infectious Diseases and Inflammation, Section Vaccines, Utrecht University Hospital, 3584 CX Utrecht, The Netherlands,1 and
2. Wyeth-Lederle Vaccines and Pediatrics, Rochester, New York 14586-97282
Abstract
ABSTRACT
A phagocytosis assay for
Streptococcus pneumoniae
based on flow cytometry (FACS) with human polymorphonuclear cells and human complement was developed for the study of human vaccination antisera. Human prevaccination sera already contain high levels of C-polysaccharide (C-PS) antibodies, which are not protective in humans but which might give false positive results in a flow-cytometry-based assay. Cultures of
S. pneumoniae
grown to log phase on three consecutive days, followed by heat inactivation, yielded stable and highly encapsulated strains for serotypes 6A, 6B, 14, 19F, and 23F. As a result, only serotype-specific antibodies were able to facilitate phagocytosis of these strains, whereas no phagocytosis was observed with antibodies against C-PS or pneumococcal surface proteins. No, or weak, phagocytosis was observed with human prevaccination sera, whereas in general, postvaccination antisera facilitated phagocytosis. A highly significant correlation was observed between enzyme-linked immunosorbent assay titers and FACS phagocytosis titers (
r
= 0.98,
P
< 0.001) for serotype 23F pneumococci with human vaccination antisera. For all serotypes, interassay variation was below 10%. Major advantages of this assay over the classical killing assay are that (i) limited amounts of sera are required (10 μl per titration curve), (ii) 600 samples can be processed in one day by one person, and (iii) cells can be fixed and measurement of the samples can be performed up to 1 week later.
Publisher
American Society for Microbiology
Subject
Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献