Three-Color Flow Cytometry Detection of Intracellular Cytokines in Peripheral Blood Mononuclear Cells: Comparative Analysis of Phorbol Myristate Acetate-Ionomycin and Phytohemagglutinin Stimulation

Author:

Baran Jarołsaw1,Kowalczyk Danuta1,Oz˙óg Mariola1,Zembala Marek1

Affiliation:

1. Department of Clinical Immunology, Polish-American Institute of Paediatrics, Jagiellonian University Medical College, Cracow, Poland

Abstract

ABSTRACT The assessment of intracellular cytokines at the single-cell level by flow cytometry has recently become a potent tool in many areas of cell biology and in defining the role of cytokines in various human diseases. Three-color flow cytometry for detection of intracellular cytokines combined with simultaneous determination of lymphocytes (CD3 + and CD4 + ) or monocytes (CD33 + and CD14 + ) was used for comparison of phytohemagglutinin (PHA)-and phorbol myristate acetate (PMA)-ionomycin-induced production of intracellular cytokines in peripheral blood mononuclear cells (PBMCs) of healthy donors. We found that the number of PBMCs stained for tumor necrosis factor alpha and gamma interferon after 6 h of activation was higher when PMA-ionomycin was used for stimulation, while the frequencies of cells positive for interleukin 4 (IL-4) were similar for both stimulators. However, PMA-ionomycin stimulation caused prominent alterations of cell morphology and membrane expression of CD4 and CD14. In contrast, PHA did not cause downregulation of surface markers and resulted in less pronounced alterations in both forward and side scatter signals during flow cytometry analysis. Moreover, during 48 h of culture PHA stimulated tumor necrosis factor beta and IL-10 production, which was not observed when PMA-ionomycin was used. We conclude that the use of PHA for cell activation may limit in vitro artifacts and allow more precise analysis of intracellular cytokine production in various disease states.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3