Quantification of Bacterial Transcripts during Infection Using Competitive Reverse Transcription-PCR (RT-PCR) and LightCycler RT-PCR

Author:

Goerke Christiane1,Bayer Manfred G.2,Wolz Christiane1

Affiliation:

1. Institut für Allgemeine Hygiene und Umwelthygiene, Universität Tübingen, Tübingen,1 and

2. 4Base Lab GmbH Advanced Molecular Analysis, Reutlingen,2Germany

Abstract

ABSTRACT Bacteria have evolved sophisticated regulatory circuits to modulate their gene expression in response to disparate environments. In order to monitor bacterial gene expression and regulation in the host, methods for direct transcript analysis from clinical specimens are needed. For most bacterial infections, amplification of the mRNAs of interest is necessary due to the low numbers of cells present and the low levels of specific transcripts. Here we compare two methods of quantitative reverse transcription-PCR (RT-PCR)—competitive RT-PCR using a one-tube system followed by standard gel analysis and the real-time detection of PCR product formation by fluorescence resonance energy transfer technology using the LightCycler unit. We isolated Staphylococcus aureus RNA directly from clinical specimens obtained from cystic fibrosis patients with chronic S. aureus lung infection and from an animal model of foreign-body infection with no further cultivation of the bacteria. Competitive RT-PCR and LightCycler RT-PCR were tested for their ability to quantify the transcription of a constitutively expressed gyrase gene ( gyr ) and a highly regulated α-toxin gene ( hla ) of S. aureus . Reproducible results were obtained with both methods. A sensitivity of 10 4 ( gyr ) and 10 3 ( hla ) copies, respectively, was reached, which was sufficient for the quantification of transcripts during bacterial infection. Overall, the competitive RT-PCR is a robust technique which does not need special RNA purification. On the negative side, it is labor intensive and time consuming, thus limiting the numbers of samples which can be analyzed at a given time. LightCycler RT-PCR is very susceptible to even traces of inhibitors, but it allows high-throughput processing of samples.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3