Biochemical Basis of Obligate Autotrophy in Blue-Green Algae and Thiobacilli

Author:

Smith Arnold J.1,London Jack1,Stanier Roger Y.1

Affiliation:

1. Department of Bacteriology and Immunology, University of California, Berkeley, California 94703

Abstract

Differential rates of incorporation of sugars, organic acids, and amino acids during autotrophic growth of several blue-green algae and thiobacilli have been determined. In obligate autotrophs (both blue-green algae and thiobacilli), exogenously furnished organic compounds make a very small contribution to cellular carbon; acetate, the most readily incorporated compound of those studied, contributes about 10% of newly synthesized cellular carbon. In Thiobacillus intermedius , a facultative chemoautotroph, acetate contributes over 40% of newly synthesized cellular carbon, and succinate and glutamate almost 90%. In the obligate autotrophs, carbon from pyruvate, acetate, and glutamate is incorporated into restricted groups of cellular amino acids, and the patterns of incorporation in all five organisms are essentially identical. These patterns suggest that the tricarboxylic acid cycle is blocked at the level of α-ketoglutarate oxidation. Enzymatic analyses confirmed the absence of α-ketoglutarate dehydrogenase in the obligate autotrophs, and also revealed that they lacked reduced nicotinamide adenine dinucleotide oxidase, and had extremely low levels of malic and succinic dehydrogenase. These enzymatic deficiencies were not manifested by the two facultative chemoautotrophs examined. On the basis of the data obtained, an interpretation of obligate autotrophy in both physiological and evolutionary terms has been developed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3