Characterization of a Dominant, Constitutive Mutation, PHOO , for the Repressible Acid Phosphatase Synthesis in Saccharomyces cerevisiae

Author:

Toh-E Akio1,Oshima Yasuji1

Affiliation:

1. Department of Fermentation Technology, Osaka University, Yamadakami, Suita-shi, Osaka 565, Japan

Abstract

An apparent operator-constitutive mutation was discovered in the repressible acid phosphatase system in Saccharomyces cerevisiae . The site of mutation, designated PHOO , was found to be closely linked to the phoD locus. The mutant allele, PHOO , was semidominant over the wild-type allele and effective for the expression of the phoD gene in cis position. The phoD mutation gave rise to a defective phenotype for the formation of the repressible acid phosphatase. On the other hand, neither the repressible acid phosphatase activity in the cell-free extracts prepared from cells of the temperature-sensitive phoD mutant grown at 25 C, nor that of the revertants from the phoD mutants, could be distinguished from that of the wild-type strain with respect to thermolability and K m value for p -nitrophenylphosphate. These results strongly suggest that the phoD gene is not a structural gene, but a regulatory gene exerting positive control for the formation of repressible acid phosphatase. Close similarity between the apparent role of the phoO-PHOD gene cluster and that of the c-GAL4 gene cluster in the galactose system of S. cerevisiae could be inferred.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3